Memo to: Mark Leum, President
Woodward Governor Company
From: Doug Albright
Date: April 16, 1990

In his news and commentary show of April 19 Paul Harvey announced that the US Army Corps of Engineers have developed a computerized blade controller for their turbines at Bonneville dam, and that they expect to produce an additional $2,000,000 worth of electricity from the same amount of water flow through the use of this device.

Attached are a copy of the USACE news release announcing this development, and copies of newspaper articles clipped from two Portland area newspapers, the Oregonian and the Columbian.

The system described is similar to our 3-D cam product for Kaplan turbines.

The 3-D cam currently offered by Hydro has not been widely accepted due to the hydro industry's unfamiliarity and distrust of electronic computing equipment. The beauty of Tom Thorsen's new method is it gives them the security of hard mechanical equipment for large excursions of gate/blade position, and the benefit of digital electronics for trimming blade position to maximize efficiency.

The nature of his device is similar to the original Kaplan blade controllers that had a single gear drive between the gates and the blades. His new device adds a slip-ring behind the blade position input gear to provide some trimming range. The computer has the ability to move the blades within the limited range provided by this slip ring assembly (approximately ±10%).

Lee Sheldon stated on 90-4-26 that the plans mentioned in the news release include (although unmentioned) index testing all of these turbines. Lee also stated that the plans for Tom's equipment have been sent to the Hydroelectric Design Center to have specifications prepared for procurement of not only the mentioned blade positioning equipment, but also the index testing equipment necessary for 113 Kaplan turbines on the Snake and Columbia rivers.

From this new information, it would seem that the competition from Tom's index testing device will not be waiting until he retires, as we had previously been led to believe.
History

86-3-24 Final project report
87-7 Magazine article
88-12-27 Patent
89-3-10 Terry’s final report
89-8-23 Durl’s paper
90-3-27 Sheldon’s report to Thorsen
90-4-20 USACE news release

The device described in the news release was offered to WGC for our adoption as a product in April of 1989.

Tom Thorsen has been working on three devices:
1. A feedback transducer from the oil head for the blade controller. His management is uncomfortable with equipment without restoring cables, so the oilhead feedback is used as a trimming signal to the normal blade restoring system. (An oil head transducer has already been incorporated in the Index Test Box by Terry.)
2. The blade positioning device described in the news release.
3. Automatic index testing equipment.

Comments/questions
We were offered the opportunity to adopt and market Tom’s blade controller over a year ago.

Tom’s plans for retirement are based on the industry’s inability/unwillingness to provide such equipment.

Our equipment has already been to market, with a successful installation of production hardware at PGE.

The uMAC-5000 computer is still available, as is the touch-screen operator interface. The only component that is unavailable is the EPROM burner. This is a generic device currently available from a large number of sources. Terry had planned to replace the EPROM burner with a floppy disk device in the next production unit of the index test box anyway, so the unavailability of this device was a moot point.

The “first one in the field” has already been done by Terry in Sept 1987.

We also have competition from another source. Page 57 of Hydro Review has an advertisement from a company named “applied solutions”.

If, as Carl stated in his letter, we need to get “our equipment on the market quickly”, why doesn’t the Woodward ad in the April 1990 Hydro Review mention index testing, when the installation and successful operation of a purchased Index Test Box was completed over a year ago?
Why has Jeff Foster not been replaced since he moved to the Test Stand division over a year ago?

Terry stated on 90-4-26 that the index test box was not his highest priority, in fact it was fourth on his list. He stated that when he was interrupted by my phone call, he was working on a head level controller for some other job.
New system will boost power output of dams

By BRIAN J. CANTWELL

The Columbia

BONNEVILLE DAM — The Army Corps of Engineers last week unveiled a new control system that will squeeze more megawatts from Columbia River dams and generate millions of dollars in added power sales.

The system is a computerized turbine-blade controller that will increase daily generator power production by about 1.5 megawatts, or enough from each of Bonneville Dam's 10 generators to supply electricity for 1,000 homes.

That is expected to generate $2 million annually in added power sales from one Bonneville powerhouse alone. The dam has two powerhouses.

"Because of this increased efficiency, we'll get more power from each generator with the same amount of water," said Pat Keough, division chief of the Corps' Portland District.

The dam's so-called Kaplan turbines, with adjustable blades, operate less efficiently when the proper angle is not maintained between turbine blades and the adjustable gate openings feeding water to the turbines.

The new system, basically a computer panel added to existing controls, will continuously monitor blade angles. It has been tested successfully on one of the main turbines at Bonneville Dam's second powerhouse since 1987.

The Portland District expects approval from its higher headquarters for installation of the system on Kaplan turbines at all Corps projects on the Columbia/Snake river system. Bonneville Power Administration has urged quick installation, Corps officials said.

The cost: $5,000 per unit, including parts and labor, "which is inexpensive considering the potential savings," Keough said.

Installation is under way on the remaining seven turbines at Bonneville's second powerhouse.

This version of the computer system was developed by Portland District mechanical engineer Tom Thorsen, working with the Hydroelectric Design Center of the Corps' North Pacific Division.

The key to the new system is programming turbine blades to vary angles based on water flow and conditions, Thorsen said.

Because of reduced pressure on turbine blades, the system also will increase the survival rate of small fish that pass through turbines, he said.
News Release

Release No. PA 89-44
Contact: Sara J. Walter

For Release: April 18, 1990 Phone: (503) 326-6005

CORPS ANNOUNCES INNOVATION TO SAVE MILLIONS IN POWER PRODUCTION

Bonneville Dam, Ore.—The U.S. Army Corps of Engineers has developed a system that will save about $2 million annually at one powerhouse alone. The system is a computerized turbine blade controller which will increase daily generator power production by about 1.5 megawatts or enough to supply electricity for 1,000 homes.

"Because of this increased efficiency, we'll get more power from each generator with the same amount of water," said Pat Keough, Corps Portland District Operations Division chief. "This will mean not only increased power revenues to the region, but decreased maintenance costs and longer equipment life.

"The system was installed and has been under test on one of the main turbines at Bonneville Dam second powerhouse since 1987. It's an application of modern computer technology," according to Keough.

Kaplan turbines, turbines with adjustable blades, operate less efficiently when the proper relationship is not determined and maintained between turbine blade angles and the adjustable gate openings where the water enters the area surrounding those blades.

"This new system automatically repositions the turbine blades and gates when conditions change so the turbine continually operates at maximum efficiency.

(more...)
“We, in the Corps, are excited and proud to be able to make this announcement, especially at a time when the Bonneville Power Administration (BPA) has announced that electrical supply nearly equals demand,” Keough said.

“Engineers have long recognized the need for such a system, and many of them have been working on it,” Keough continued. “Engineers from other Corps offices participated in the development.”

The District expects approval from its higher headquarters for installation of the system on Kaplan turbines at all Corps projects in the Columbia/Snake River system. BPA expressed a keen interest and urged quick installation. Installation is underway on the remaining seven units at the Bonneville Dam second powerhouse. Keough said "installation cost is about $5,000 per unit, including parts and labor, which is inexpensive considering the potential savings. We know, for example, that we have improved efficiency on the test generator at Bonneville Dam second powerhouse by about 2 percent. If we multiply that savings by all the generators in the second powerhouse using a wholesale rate of 5 cents per kilowatt hour, this would produce an annual $2 million in revenue," Keough said.

This version of the innovative computer system was developed by Portland District mechanical engineer Tom Thorsen working in conjunction with the Hydroelectric Design Center of the Corps' North Pacific Division. Thorsen explains the system in this way.

"First, we must determine the most efficient turbine blade angles at a given powerhouse under varying conditions. We do this by using what we call an 'index' test, which involves operating a unit under (more....)
different water levels, using different gate and turbine blade positions, and measuring the results. The maximum efficiency points are those which generate the most electric power using the least amount of water. The data from the index tests are entered into the computer, which then can be set to continually monitor the blade position and amount of water and to continually make corrections to maintain maximum efficiency."

Thorsen said also, "the device provides a convenient digital display of the inputs, the blade position error, and an alarm system to warn powerhouse operators of power or input signal losses. This new system provides a complete and uninterrupted picture of how well it is doing its job. That is another major improvement over existing systems."

"Another advantage of this system will be increases in survivability of any juvenile fish that pass directly through the turbines and not through the fish bypass systems at our projects," said Keough. "We are finding that by increasing the efficiency angles of the blades and gates, pressures are reduced above and below the blades that may cause harm to the fish."

"We in the Corps continually strive to sharpen our abilities by exploring new and better ways to do our job. This is just one example of innovative, responsive engineering service to the nation," Keough concluded.